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An algorithm is proposed to simulate regular arrays of perfectly rigid particles with exact Coulomb’s law of
friction. Relying on this approach, we explore the problems of indeterminacy and dissipation in granular
systems. When driven by a basal plane moving at a constant acceleration, a ‘‘steady state’’ is achieved where
contact forces and angular accelerations of all particles stay constant in time. This state shows a well-defined
organization of particle rotations and contact forces. When the driving speed is kept constant, the dissipation
rate decreases dynamically to reach its minimum in the steady state. The global frictional behavior of the
system can be described in terms of an effective coefficient of friction and an effective inertia.
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PACS number~s!: 46.10.1z, 83.70.Fn

I. INTRODUCTION

Contact forces in dry granular systems imply two com-
mon basic features: steric exclusion and frictional couplings.
Steric exclusion means that particles cannot interpenetrate.
The process of gain and loss of contacts in the medium and
the possibility of lasting contacts to be sliding or nonsliding,
are highly nonlinear interactions which directly influence the
macroscopic mechanical behavior of the system@1–5#.

In the case ofperfectly rigid particles withCoulombian
friction law, these nonlinearities take a ‘‘nonsmooth’’ form
@6–8#. This means, the contact force and the relative dis-
placement at a contact between two particles belong to a
continuous set of acceptable values which can not be repre-
sented as a function of any of the two variables@9#. Thus,
while for elastic contacts the interparticle force at each con-
tact is given locally as a function of the relative displace-
ment, the actual values of contact forces in nonsmooth con-
ditions are determined only when all kinematic constraints in
the whole system are explicitly taken into account.

The analytical study of the effects of these nonlinear and
nonsmooth interactions on the global behavior of granular
systems in deformation is complexified furthermore by two
specific features of these systems:topological disorderand
particle rotations. As a result of topological disorder, a par-
ticle can have contacts oriented in any direction, and the
positions and orientations of contacts are not correlated. On
the other hand, rotations of particles and the possibility of the
friction force to be more or less ‘‘mobilized’’~i.e., accepts
values up to a certain limit where it is ‘‘fully mobilized’’!
allow for rolling and thus low-dissipative deformation modes
for the system. These aspects are absent from the standard
continuum theory and motivate much of the recent interest in
the discrete approach to the mechanics of granular systems
@1,10–14#.

The complexity resulting from geometrical disorder sug-
gests that, if the influence of nonlinear interactions is to be

explicitly analyzed, regular arrays of particles should be ex-
amined in the first place. Such studies can provide insight
into the behavior of disordered granular systems. In this pa-
per, we consider regular arrays of rigid disks confined by two
flat walls and a basal plane moving with a constant horizon-
tal velocity or acceleration. It is important to emphasize the
point that, unlike lattice models, a regular array of rigid disks
has no fixed underlying network. Thus starting from a regu-
lar geometry the particles can move and the system may
evolve to a disordered configuration. Nonetheless, geometri-
cal order can still be preserved for some regions in the space
of mechanical parameters. In our model, the relevant param-
eters are driving acceleration and confining pressure~the
pressure applied on the uppermost layer of particles!. In this
investigation, where the confining pressure is set to zero, we
have kept driving accelerations low enough to avoid particle
displacements. Hence the internal degrees of freedom are
reduced to particle rotations. As we shall see below, even
though the particles stay in permanentgeometricalcontact
with each other, not all such contacts are force transmitting.
Moreover, during the evolution of the system some nontrans-
mitting contacts may turn transmitting and vice versa.

We have set up an original algorithm to simulate this
system under nonsmooth conditions. The contact laws and
their implementation in the program are discussed in Sec. II.
This algorithm provides a vectorial representation of ‘‘con-
tact states.’’ Each contact in the medium is force transmitting
or nontransmitting, sliding or nonsliding. In the most general
case, the system of equations has a unique solution for the
contact states, determined at the same time as the contact
forces and the angular accelerations of particles. However, in
some conditions in statics or in dynamics, the system of
equations becomes indeterminate. In contrast with other
simulation methods of granular systems, this algorithm al-
lows for a quantitative study of this property, to which Sec.
III is devoted.

Our simulations show that the system achieves a ‘‘steady
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state,’’ which means that the angularaccelerationsof all
particles stay constant in time. In this state, rotation modes
give rise to well-defined patterns in the medium. The steady
state and the evolution of the system in terms of the global
friction on the basal plane and dissipation rate are studied in
Sec. IV. Some results can be immediately generalized to dis-
ordered systems. Emphasis is put on ‘‘effective inertia’’ and
the influence of particle rotations on dissipation. A summary
of the most important results is presented in Sec. V.

II. THE MODEL AND GOVERNING EQUATIONS

A. The model

Let us consider a regular array of equal-size disks con-
fined by two vertical flat ‘‘walls’’ and a plane moving hori-
zontally. Figure 1 shows this geometry with a triangular ar-
rangement of particles. We assume that the particles, the
walls, and the plane areperfectly rigid. The distance between
the two walls is a fixed geometrical parameter which defines
the width of the ‘‘box.’’ The plane exerts forces on the par-
ticles directly in contact with it. The sum of these friction
forces is the ‘‘global friction force,’’Fg of the plane on the
system. The box, with particles in it, can be considered as a
single object moving on the plane. LetN be a horizontal
driving force applied on the box. The equation of motion for
the center of mass of the whole system is written as

N2Fg5mgg, ~2.1!

wheremg is the total mass of the system andg is the hori-
zontal acceleration of the center of mass. If the box were a
solid closed object~with no particles in it and with a closed
bottom!, then this equation could be ideally supplemented by
the friction law for the sliding contact between the box and
plane

Fg5mgmgg, ~2.2!

whereg is the acceleration of gravity andmg is the coeffi-
cient of friction between the solid and the plane. Thus for a

solid box we would solve the two equations to getg as a
function of the driving force and the coefficient of friction.
However, in the case of a box filled with particles, the inter-
face between the box and the plane is an array of particles.
Some contacts with the plane can be ‘‘nonsliding’’~hereafter,
NS! and the movement of the plane induces rotations or
displacements of the particles in the box, resulting in a bulk
dissipation. In these conditions, although Eq.~2.1! still holds
for the center of mass of the system, it is nota priori clear
how the global friction force is related to the particle-plane
coefficient of friction and other parameters of the system.
Moreover, in the most general case,Fg should depend on the
acceleration as well, in which case the inertia of the system
could be different from the mass of the system as soon as this
dependence is taken into the equation of dynamics. Through
this model, we address in fact the central problem raised
about granular materials: In what respect are granular sys-
tems different from solids? What are the mechanisms that
relate the global friction~and dissipation! to the friction at
individual contacts?

The key to the analysis is in the organization of the rota-
tions of particles in the system. We consider here the simple
situation of regular arrays of particles, where rotation pat-
terns are easier to recognize. Since NS contacts occur very
frequently in the system, it is important to incorporate the
friction law as accurately as possible. We will consider the
exactCoulomb’s law of friction, which is generally regular-
ized in other simulation methods. Moreover, since steric ex-
clusion seems to dominate the behavior of granular materials
in most realistic situations@1–3#, we will implement per-
fectly rigid particles. The mechanical parameters are the
particle-particle, particle-plane, and particle-wall coefficients
of friction and the applied forceN on the box or the accel-
erationg of the center of mass. All units can be normalized
with respect to the natural quantities of the system. These are
the weight and diameter of one particle and the acceleration
of gravity.

B. Contact laws

Let p be the number of particles andc the number of
contacts. In two dimensions we have 2c normal and friction
forces to be determined, as well as 3p accelerations~corre-
sponding to 2 linear degrees of freedom and 1 angular!.
Hence the total number of unknowns is 3p12c. On the
other hand, the number of equations of dynamics is 3p. Thus
2c more equations are needed in order to solve the problem.
These equations are given by the interaction laws and, typi-
cally, we should have two equations for each contact. For the
nonsmooth problem we consider in this paper, these laws are
Signorini’s condition and Coulomb’s friction law, as de-
scribed below.

1. Signorini’s condition

Since we consider perfectly rigid particles, the normal
contact forces are not given by local elastic displacements.
The contact law is then reduced to apure ‘‘unilaterality’’
condition shown by a graph on Fig. 2~a!. This graph, known
as ‘‘Signorini’s condition’’ in the context of nonsmooth me-
chanics, expresses simply that a contact force can be nonzero
only if there is a geometrical contact and it can have arbi-

FIG. 1. A schematic representation of the model. The plane is in
contact with the first layer of particles. The distance between the
two rigid walls is fixed.
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trarily high values to satisfy the condition of noninterpen-
etrability @6–8#. It is written as

di j50⇒Ri j>0

~2.3!

di j.0⇒Ri j50,

where di j is the distance between the borders of the two
particlesi and j ~the interstice! andRi j is the normal com-
ponent of the contact force.

Signorini’s condition isnonsmoothin the sense that none
of the two variablesd andR is a function of the other one.
The normal force and the interstice belong to a continuous
set of acceptable values. We may distinguish, however, be-
tween ‘‘stable’’ and ‘‘unstable’’ contacts. When at a given
instant of evolution of the system two particles keep touch-
ing each other, the contact is stable. In other words, for a
stable contact not only the interstice, but also the relative
normal velocity is zero. On the other hand, if the interstice is
zero but the relative normal velocity is positive~particles
going apart from each other!, then the contact is unstable and
the reaction force is necessarily zero. In this way, Signorini’s
condition takes the following form in terms of the interstice
and the relative normal velocity:

di j50⇒H q i j
n50 and Ri j>0

q i j
n>0 and Ri j50,

~2.4!

di j.0⇒Ri j50,

whereq i j
n is the relative normal velocity between particles

i and j .

The highly constraining nature of Signorini’s condition
appears only when a dynamic system of particles is consid-
ered, i.e., when either discontinuous changes of velocities
take place due to collisions or stable contacts tend to become
unstable due to a nonzero relative normal acceleration. The
regular systems we consider in this paper involve no colli-
sions and all contacts are stable. Let us distinguish contacts
where the relative normal accelerationq̇ i j

n is zero from the
other contacts. Then, we can immediately write Signorini’s
condition for the relative normal accelerations

di j50⇒H q̇ i j
n50 and Ri j>0

q̇ i j
n>0 and Ri j50,

~2.5!

di j.0⇒Ri j50.

The difference between Eq.~2.4! and Eq.~2.5! is in the point
that the latter is a set of alternative equations for thedynamic
variablesRi j andq̇ i j

n . These equations can be supplemented
to the equations of dynamics to solve for the forces and
accelerations. There are two alternatives:

~1! q̇ i j
n50 and Ri j>0: In this case, the equation

q̇ i j
n50 is supplemented to the equations of dynamics, from

which the value ofRi j can be calculated. If this value satis-
fies the corresponding inequalityRi j>0, then the solution is
acceptable.

~2! Ri j50 and q̇ i j
n>0: In this case, the equation

Ri j50 should be supplemented to the equations of dynam-
ics, from which the value ofq̇ i j

n is calculated. If the corre-
sponding inequalityq̇ i j

n>0 is satisfied the solution is accept-
able. Otherwise, we should turn to the other alternative.

In this way, in dynamics the initial inequalities expressing
the conditions of unilateral contacts have been replaced by a
set of alternative equations~bilateral conditions!. In the case
of regular systems, the two alternatives correspond to force-
transmitting~T! and nontransmitting~NT! contacts, respec-
tively. This process of searching for the mechanically accept-
able solution has to be applied simultaneously to all contacts
in the system. As we shall see below, except for pathological
configurations, the solution for normal forces, accelerations,
and normal states~T or NT! of contacts is unique.

2. Coulomb’s law of friction

A friction law is a relation between the friction force and
the relative tangential velocity at the contact between two
particles. The graph of this relation for Coulomb’s law is
shown on Fig. 2~b!. In two dimensions, it is written as

q i j
t 50⇒Si jP@2mRi j ,mRi j #,

q i j
t .0⇒Si j52mRi j , ~2.6!

q i j
t ,0⇒Si j5mRi j ,

whereq i j
t is the relative tangential velocity at the contact

i j between the particlesi and j , andSi j is the tangential
component of the contact force. Here again, we have a non-
smooth condition and the two variablesq i j

t andSi j belong to
a continuous set of acceptable values. In static equilibrium,
where all relative velocities are zero~on the vertical branch

FIG. 2. The graphs of~a! Signorini’s condition~b! Coulomb’s
law of friction.Ri j andSi j are, respectively, the normal and tangen-
tial components of the contact force between the particlesi and j ;
di j is the interstice andq i j

t is the tangential relative velocity;m is
the coefficient of friction.
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of Coulomb’s graph!, Coulomb’s law results indeed in an
indeterminate state of forces~see Sec. III!. In the same way,
for a given set of friction forces at the sliding limit~on the
horizontal branches of Coulomb’s graph!, the relative tan-
gential velocities are not uniquely determined.

This local indeterminacy is, however, removed as soon as
Coulomb’s law is associated with the equations of dynamics.
There we have to distinguish the contacts where the relative
tangential velocityremainsequal to zero from those where
this is not the case. In other words, there are contacts where
the relative tangential velocity is equal to zero and contacts
where both the relative tangential velocity and acceleration
are equal to zero. Only the latter actually stays a nonsliding
~NS! contact. Thus at each NS contacti j , there are three
different alternatives:

~1! q̇ i j
t 50: In this case, the contact stays NS. The fric-

tion force Si j has to be in Coulomb’s limits
@2mRi j ,mRi j #. Here we have an equation and an inequality.
When the equationq̇ i j

t 50 is supplemented to the equations
of dynamics, we get the value ofSi j and we can check for
the inequality. If the inequality is satisfied as well, then we
have the solution. Otherwise, the force necessary to keep the
contact NS exceeds the highest possible value, i.e., the con-
tact starts to slide and we have to switch to one of the two
other alternatives.

~2! q̇ i j
t .0: In this case, the contact becomes sliding. So,

we have to setSi j52mRi j following the sign convention of
Fig. 2~b!. Here again we have an equation and an inequality.
We supplement the equations of dynamics by this equation,
from which we calculateq̇ i j

t among others, and we check for
the inequality. If the inequality is not satisfied, then we turn
to another alternative.

~3! q̇ i j
t ,0: This is similar to the second case, the corre-

sponding equation beingSi j5mRi j . In this way, Coulomb’s
law in its most general formulation, takes the following
form:

q i j
t 50⇒H q̇ i j

t 50 and Si jP@2mRi j ,mRi j #

q̇ i j
t >0 and Si j52mRi j

q̇ i j
t <0 and Si j5mRi j ,

~2.7!

q i j
t .0⇒Si j52mRi j ,

q i j
t ,0⇒Si j5mRi j .

We recall that in most numerical simulations of granular
systems ‘‘regularized’’ forms of Signorini’s condition and
Coulomb’s law are implemented. Thus, the vertical branches
of the graphs are replaced by straight lines with finite slopes
which can either be adjusted in order to optimize computa-
tion or to model an elastic contact law. A ‘‘contact model’’
is, indeed, necessary when the phenomena of the contact
scale~small time intervals and deformations as compared to
the sizes of particles and interstice and the characteristic time
of successive events in the medium!, such as the propagation
of sound, are to be considered.

C. Governing equations

The algorithm we propose for the simulation of perfectly
rigid particles with frictional couplings is directly inspired by
the reformulation of contact laws in terms of alternative
equations. In order to solve the system, the alternative con-
figurations are to be tested successively until the solution is
found. This has to be done simultaneously for all contacts.

We write the equations of dynamics for a given set of
contact states. Each contact is either sliding or nonsliding
~NS!, force-transmitting or nontransmitting~NT!. For a NT
contact (i j ), we simply write

Ri j50. ~2.8!

For a transmitting contact, the relative normal acceleration is
set to zero. From the equations of dynamics, this implies the
following equation for the forces acting on the two particles
i and j in contact:

1

mi
(
k

~Riknik•ni j1Siktik•ni j !

2
1

mj
(
l

~Rjlnj l •ni j1Sjl tj l •ni j !

52S F i
ext

mi
2
F j

ext

mj
D •ni j2~r i1r j !V i j

2 , ~2.9!

wheremi andr i are the mass and radius of particlei , respec-
tively, andF i

ext is an external force applied on particlei . The
local frame is represented by the two unitary vectorsni j and
ti j . The angular velocity of the contact normalV i j is zero for
a regular array. The two indicesk and l represent the par-
ticles in contact withi and j , respectively.

If a contact is sliding, we have the equation

Si j52sgn~q i j
t !mRi j . ~2.10!

If it was NS but becomes sliding, the equation is similar

Si j52sgn~q̇ i j
t !mRi j ~2.11!

and when it stays NS, the relative tangential acceleration is
zero and we get the following equation:

1

mi
(
k

~Riknik• ti j1Siktik•ti j !

2
1

mj
(
l

~Rjlnj l •ti j1Sjl tj l •ti j !1
r i
2

I i
(
k
Sik1

r j
2

I j
(
l
Sjl

52S F i
ext

mi
2
F j

ext

mj
D •ti j . ~2.12!

It is interesting to separate the terms in Eqs.~2.9! and~2.12!
for which k5 j and l5 i , which leads to

q̇ i j
n5S 1mi

1
1

mj
DRi j1Ai j

n ~2.13!
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q̇ i j
t 5S 1mi

1
1

mj
1
r i
2

I i
1
r j
2

I j
DSi j1Ai j

t . ~2.14!

These are the equations of dynamics formulated in the local
frame, whereAi j

n andAi j
t denote the contributions from other

contacts and external forces. Actually these terms are respon-
sible for the nonlocal character of the problem.

All together, Eqs.~2.8! or ~2.9! and ~2.10!, ~2.11!, or
~2.12! define a system of linear equations for the forcesRi j
andSi j , written shortly as

Mx5b. ~2.15!

The vectorx consists of the unknown contact forces while
the matrix M contains mainly information on geometry
~angles between local frames! and states of contacts. The
right hand sideb is built of the external and inertial forces.

The angular accelerations of particles are computed from
contact forces for the set of contact states. However, these
forces and accelerations should fulfill the inequalities~2.5!
and ~2.7! set by contact laws. If this is not the case for all
contacts, then a new set of contact states has to be tried. The
choice of the alternative set of states is guided naturally by
the states of those contacts where the inequalities are not
satisfied. This process is iterated until the solution is found.

The evolution of a granular system in nonsmooth condi-
tions is characterized by discontinuities in velocities~due to
collisions! or in accelerations and contact forces~due to Cou-
lombian friction!. In regular systems only friction can induce
‘‘jumps’’ of forces and accelerations whenever an ‘‘event’’
occurs~vanishing of the relative tangential velocity on a con-
tact!. The event can be located on a single contact. Never-
theless, it may cause some NS contacts to become sliding or
some T contacts to change to NT~and vice versa! at the same
time.

In the simulations we present in this article, the motion is
‘‘smooth’’ between two successive events. The algorithm
determines the exact moment of each event. The new values
of variables are calculated at this moment according to the
iterative scheme of testing alternative equations. Then the
system is evolved again. The convergence to the solution
takes place only in a few iterations, unless the system of
equations is indeterminate, in which case a particular solu-
tion has to be found.

III. INDETERMINATE STATES

Indeterminacy of the state of forces arises in the analysis
of structures composed of rigid elements. It is shown that, in
many problems, the number of forces to be determined is
greater that the number of equations of static equilibrium and
the constraints. Such indeterminacies are, however, removed
by supplementing the equilibrium equations with additional
equations pertaining to the displacements of the structure
@15#.

In this section, we study the indeterminacy arising in
regular arrays of rigid particles. We begin with a general
introduction to the problem. Then, we show how the tech-
niques of ‘‘singular value decomposition’’ can be used in our
simulations to determine the degree of indeterminacy and the
contacts contributing to it. Finally, we identify the geometri-

cal constraints at the origin of indeterminacy and we discuss
possible solutions to the problem.

A. Uniqueness and indeterminacy

In dynamics, the local nonsmoothness in the friction law
does not by itself result in indeterminacy. The general argu-
ment in favor of uniqueness of the solution in a dynamic
system of particles is shown in Fig. 3~b!. For each contact,
the friction force satisfies Coulomb’s graph. On the other
hand, the equation of dynamics stated in the local frame
attached to a contact, turns out to be a straight line with a
finite positive slope@cf. Eqs. ~2.13! and ~2.14!#. The inter-
section between this line and Coulomb’s graph is a single
point which gives a unique value for the friction force at that
contact. In statics, the relative tangential acceleration is zero
and the straight line representing the equation of dynamics in
the local frame is simply a vertical line going through the
origin. This line covers the whole vertical branch of Cou-
lomb’s graph and, thus, the friction force at the contact stays
indeterminate@Fig. 3~c!#.

The same argument applies also to Signorini’s graph@see
Fig. 3~a!#. From this it becomes clear that uniqueness of the
solution is also due to the form of the basic Coulomb’s law.
For instance, if besides the dynamic coefficient of friction a
static threshold is introduced into this graph, then there can
be two solutions for each contact at the same time and the
actual value of the friction force depends on the history of
the system@Fig. 3~d!#.

In static equilibrium, we never have enough equations to
solve the system of equations. Letc andp be the number of
contacts and the number of particles in a granular system,
respectively. There are 2c forces to be determined~the ac-
celerations are set to zero!. But we have 3p equations of
equilibrium. Since in a disordered medium the mean number
of contacts is about two times that of particles@16#, the total

FIG. 3. ~a! and ~b!. The equations of dynamics@cf. Eqs.~2.13!
and ~2.14!# projected on the local frame, attached to a contact be-
tween two particles, are shown as~dashed! straight lines with posi-
tive finite slopes. These cut Coulomb’s and Signorini’s graphs at a
single point.~c! In static equilibrium, the slope is formally infinite
~sinceq̇ i j

t is kept zero! and the intersection with the two graphs is
multiple valued.~d! When a friction law involving static and dy-
namic thresholds is considered, the solution is no more unique.
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number of forces to be determined is 4p. In this way, there
arep undetermined forces in the system. In other words, in
static equilibrium, half of the friction forces are undeter-
mined.

We note that this is abulk indeterminacy, for the degree
of indeterminacy is of the same order of magnitude as the
size of the system. One important implication of this situa-
tion is that the indeterminacy cannot be removed just by
controlling forces on the boundary, whose contribution to the
total indeterminacy is only proportional to the total surface
of the boundary in terms of the number of particles. It is then
an interesting and highly nontrivial question to know how
the friction forces are distributed inside a disordered granular
system, in particular in the limit of macroscopic ‘‘failure.’’

B. Singular value decomposition

The contact matrixM, introduced in Sec. II, contains all
the information about the states and orientations of contacts.
If this matrix is singular, then the system of equations is
indeterminate and the dimension of the null space gives the
degree of singularity. One solution, among an infinite num-
ber of solutions, can be singled out by setting mechanically
acceptable values of as many contact forces as the degree of

singularity, otherwise the states of some contacts can be
changed in order to set up a new contact matrix. Figure 4
shows four different solutions of forces for the same system
with the same boundary conditions. In this example, the tan-
gential contact states are set to be sliding at all contacts and
only normal contact states change.

We have used the ‘‘singular value decomposition’’~SVD!
to study the singularities of the contact matrix@17#. Based on
a general theorem of linear algebra, SVD allows to decom-
pose the matrixM as follows:

M5U•@diag~wii !#•V
T, ~3.1!

whereU andV are two orthogonal matrices and the elements
wii ~the singular values! are positive or zero. The columns
i of U such thatwiiÞ0 form an orthonormal set of basis
vectors that span the range of the matrixM. The columnsi
of V such thatwii50 form an orthonormal basis for the null
space.

What is the connection between the basis of the null
space, obtained explicitly from the SVD, and contact states?
Each linea of the contact matrix corresponds to an equation
implying the contact labeleda. Let $ea% be the unitary or-

FIG. 4. Four different solutions for the normal
contact forces in a triangular assembly. The
widths of intercenter segments are proportional to
the corresponding contact forces. Particles have
different angular velocities~positive and nega-
tive!. They are kept the same in the four configu-
rations.
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thonormal basis. Ifea is orthogonal to the null space, then
the contacta does not contribute to the singularity of the
matrixM. In other words, the condition for a contacta not
to contribute to the singularity is written as

ea
•vb50 for all b, ~3.2!

where$vb% is a basis of the null space. To each basis vector
of the null space corresponds a group of contacts contribut-
ing by one degree to the total degeneracy of equations.

Let us first consider the normal contact state, which sets
the state of a given contact to be T or NT. The singularities
can arise only from transmitting contacts. Indeed, from the
point of view of equations a NT contact does not ‘‘exist,’’
since for such a contact the two components of the contact
force are both zero. On the other hand, the maximum number
of singularities can occur in a system whose contacts are all
transmitting. We have studied the number of singularities
due to the normal contact state in triangular and rectangular
arrays. The number of singularities is given by

Nn5H LxLy22Ly12 triangular

Ly rectangular,
~3.3!

whereLy is the number of rows andLx is the number of
particles in a row~in the triangular caseLx is the number of
particles in rows which are in contact with the two walls of
the frame!.

We note that in the triangular assembly, the degree of
singularity has a bulk term which is of the same order of
magnitude as the number of particles in the system. This is a
specific feature of the triangular arrangement. Indeed, let us
consider the six neighboring particles of a given particle in
the medium. These particles form a regular hexagon around
the central particle@Fig. 5~a!#. Each particle of this hexagon
has one contact with the central particle and two contacts
with its lateral neighbors. However there is one degree of
redundancy in the preceding statement. Because, given all
contacts of the particles in the hexagon with the central par-
ticle and five lateral contacts, the existence and position of
the last lateral contact can be geometrically predicted. Since
this argument applies to each particle in the medium inde-

pendently of other particles, we can conclude that the degree
of singularity resulting from these geometrical constraints in
the bulk is one per particle. This is in agreement with Eq.
~3.3! obtained from our simulations. Moreover, in our vecto-
rial representation of the states of contacts through the con-
tact matrix, to each group of 12 contacts defined by one
particle and its six neighbors corresponds one basis vector of
the null space. For particles in contact with the rigid walls of
the frame, an analogous study yields the corresponding con-
tribution to the total singularity. This contribution is only
proportional to the total surface of the boundary.

In the rectangular assembly, according to Eq.~3.3!, there
is one degree of singularity per row. In fact, each row is
limited by two rigid walls @Fig. 5~d!#. Given the distance
between the two walls, which is an integer multiple of one
particle diameter, existence and the exact position of one
contact can be predicted from the positions of all the other
contacts in each row. This situation results in one degree of
singularity in the system of equations for each row. Hence
the set of lateral contacts in each row represents a basis vec-
tor of the null space. This configuration of particles forming
a row in contact with the two walls exists also in the trian-
gular arrangement and contributes to the total singularity.

Another source of singularities of the contact matrix is the
configuration of tangential contact states. In this case, only
nonsliding~NS! contacts can result in redundancy. For slid-
ing contacts the contact equation is local, that is the friction
force is given as a function of the normal force at the same
contact, so that it cannot be a linear combination of equations
associated with other contacts. Hence the maximum degree
of singularity happens when a maximum number of contacts
are NS. This is particularly the case when the rotation ve-
locities of all particles are zero. Then the degree of degen-
eracy is given by

Nt5H 2LxLy22Ly2Lx12 triangular

LxLy1Ly rectangular.
~3.4!

Geometrically, each loop of a minimal number of particles
contributes by one degree to the total degeneracy. The basic
configuration for the rectangular lattice is a loop of four par-
ticles shown in Fig. 5~b!. If three of the contacts are NS, then
the fourth contact is necessarily NS. Since each particle is
common to four loops of four particles, the degree of singu-
larity is one per particle for the rectangular array. This is in
agreement with Eq.~3.4!, where the bulk term is almost
equal to the number of particles. In the case of triangular
arrays, the same argument applies for a loop of three par-
ticles @where rotation is generically frustrated, cf. Fig. 5~c!#.
Here six loops belong to each particle, while each loop in
turn is shared by three particles. This results in two degrees
of singularity per particle in agreement with Eq.~3.4!.

For the tangential contact state too, the contacts with the
boundary may contribute to the total singularity. Figure 6
shows the initial angular velocities of an array of seven par-
ticles on a flat plane. The angular velocities are also shown at
some stage of evolution of the system, where the system of
equations is indeterminate due to the rotation mode of par-
ticles. Indeed, some particles are rotating alternatively in two
opposite directions. Those rotating in the positive direction
~the same direction as the linear motion of the particles! are

FIG. 5. Different basic structures contributing to the indetermi-
nacy of solutions resulting from the normal contact states~a! and
~d! or from the tangential contact states@~b!, ~c!, and~e!#.
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also rolling on the plane. This mode implies a loop of four
NS contacts, which are shown in Fig. 5~e!, and are at the
origin of indeterminacy of the system, although the system is
not in static equilibrium. This particular mode happens
whenever the plane-particle coefficient of friction is suffi-
ciently high.

It is important here to emphasize the point that Eq.~3.4!
gives the maximum number of singularities in statics. In dy-
namics, the number of singularities is always smaller. The
loop of four contacts remains in any case the basic indepen-
dent representation of the basis vectors of the null space.

We recall that the basic structures of Fig. 5 contributing to
the total singularity of the system of equations correspond to
a particular basis of the null space. Other more complex
structures can be chosen instead. In other words, the basis of
the null space can be set up differently. Each basis singles
out a different set of contact configurations.

C. Particular solutions

In Sec. III B, we have identified the geometrical and ki-
nematic constraints giving rise to indeterminate states in two
dimensions. The singularities can be removed by choosing as
many sliding and nontransmitting contacts as possible. The
restriction on the number of such contacts comes from the
mechanical acceptability of the states. In fact, a random
choice of contact states leads most of the time to unaccept-
able situations. These are situations where the evolution of
the system would result in interpenetration of particles or in
a friction force incompatible with Coulomb’s law.

An example of a mechanically acceptable solution
~among an infinite number of other solutions! in the triangu-
lar assembly is the one where all transmitting contacts are
sliding and all lateral contacts~contact normals oriented
horizontally! are NT. This could be the physical solution for
contact states when the whole system is vertically com-
pressed. The total number of lateral contacts is
Nl5LxLy2Ly/2, where the number of rows is taken to be
even. The total number of lateral NT contacts is thus greater

than the maximum degree of indeterminacy. Depending on
the angular velocities of particles, still more contacts could
be NT in this configuration.

As emphasized above, in nonsmooth conditions, an ac-
ceptable solution implies all kinematic constraints in the
whole assembly to be taken into account. A practical conse-
quence of this property is that the preparation of a pile is
always a collective operation even when a step-by-step pro-
cedure is used. Starting with one grain and adding grains one
by one according to a well-defined procedure, does not nec-
essarily lead to a packing of the desired properties. The ad-
dition of each grain can modify the configuration or contact
states obtained in the preceding steps. This is more particu-
larly the case at macroscopic instability thresholds, where
big events can be triggered by the addition of one grain. This
nonlocality is manifest in two characteristics of the distribu-
tion of forces inside a granular medium: strong-force paths
and arching. Both of these phenomena can be observed in
Fig. 4 obtained fromrandomdistributions of normal contact
states. Along such structures, a small modification of the
state of one contact can result in long-range reorganization of
contact states.

The geometrical property at the origin of bulk indetermi-
nacy due to normal contact states is irrelevant to real granu-
lar media, where particles have different shapes and sizes.
This seems to be usually true for tangential contact states,
too. For example, a loop containing an even number of NS
contacts implies no redundant information. Indeed, since the
sizes of particles are different and they can move, the fact
that all contacts in the loop are NS provides the new infor-
mation that at least two particles are moving. However, the
indeterminacy due to tangential contact states is still relevant
to disordered granular systems in static equilibrium and
probably, for some configurations, in dynamics. This is the
most important singularity and, as mentioned in Sec. III A,
concerns half of the contacts inside the medium in static
equilibrium.

IV. EVOLUTION OF CONTACT STATES

The evolution of a granular system in nonsmooth condi-
tions is essentially that of contact states. Contact forces, an-
gular accelerations, and dissipation rate undergo a discon-
tinuous change every time a contact in the medium changes
its state. Relying on the numerical scheme described above,
we have studied some aspects of the evolution for rather
small systems of particles.

A. Self-organization and modes

Our simulations show that, for a given linear acceleration
of the box with respect to the basal plane, the whole system
achieves asteady statewhere the relative tangent accelera-
tion at every contact has the same sign as the the relative
tangent velocity, or both are zero. In the steady state, the
angular accelerations of all particles and the contact forces
stay constant in time, since the contact states can no more
evolve. What is more, this state is independent of the initial
angular velocities of particles. Figure 7 shows the angular
accelerations of particles in a rectangular array at three dif-
ferent stages of evolution. Figure 8 shows angular accelera-

FIG. 6. Rotation velocities of seven particles moving on a plane.
The initial random distribution of velocities evolves to a particular
indeterminate mode. All quantities are normalized with respect to
the weight and radius of one particle and the acceleration of gravity.
The particle-particle and particle-plane coefficients of friction are
both 0.3.
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tions, normal forces, and friction forces in the steady state for
a rectangular array moving with a constant acceleration of
0.2 g.

The interesting feature of the steady state is the well-
defined organization of particle rotations~and equivalently,
the contact states!. In Fig. 8, three different modes can be
distinguished. All particles of the first row~from below! are
just rolling on the plane. They have the same angular accel-
eration and all particle-plane contacts are NS. We will refer
to this mode of collective rotation as mode 1. In other rows,
the particles rotate still in the same direction, but the angular
acceleration decreases in absolute value along the row~mode
2). All lateral contacts between the particles in each row are
sliding. Finally, in each column the particles rotate with the
same speed but alternatively in the positive and negative
directions (v i52v j ) except for the particle in contact with
the plane~mode 3). All contacts in each column are NS
~except for the contacts between the first and second rows!.

The same collective modes may appear successively
along a column or a row. Figure 9 shows the steady-state
angular accelerations for a 1034 rectangular system as a
function of the positions of particles in each row. In the first
row ~in contact with the plane!, there are four particles in
mode 1, three particles in mode 2, and two particles in mode
3. The particles in contact with the wall have a particular
status, since the walls cannot ‘‘rotate.’’ Along other rows a
more complicated pattern is observed. However we can still

distinguish modes 2 and 3. Mode 3 governs the rotations
along columns.

An analytical study of the origin of these modes in a
one-dimensional array can be found in Refs.@18,19#. In
mode 1, the friction force between the particles and the plane
is progressively mobilized along the row@see Fig. 8~c!#. For
the last particle in mode 1, the friction force with the plane is
fully mobilized and these contacts cannot keep their NS
states. There begins mode 2, where the particles are sliding
and rotating at the same time. However, the angular accel-
eration decreases until, for the first particle in mode 3, it
becomes negative. From this point, the particles rotate alter-
natively in positive and negative directions or do not rotate at
all. In the particular case where the driving acceleration is set
to zero ~see below!, we observe the same patterns of rota-
tions, except that mode 2 disappears and mode 3 is domi-
nant.

Experiments on granular media show the existence of a
‘‘mesoscopic’’ length scale in between the system size and
the size of the particles@20#. However, the mechanisms be-
hind these length scales are not well known. Our results sug-
gest one possible mechanism for the appearance of mesos-
copic scales: a progressive mobilization of friction forces
inside the medium up to the sliding limit.

B. Global friction

A relevant macroscopic quantity is the ‘‘global coefficient
of friction’’ mg on the plane. This is the ratio of the total
friction force on the plane to the total weight of the particles.
Its time evolution is shown in Fig. 10 for a rectangular array
of particles starting with four different initial conditions. Its
steady-state value is independent of the initial conditions and
depends only on the mechanical parameters of the system.

The global steady-state friction forceFg on the plane var-
ies with the linear acceleration of the system as shown in
Fig. 11. It increases linearly withg when the latter is small.
After a nonlinear transition, the dependence again becomes
linear with a different slope~namely, zero!. In these linear
regimes, it is sensible to define an ‘‘effective inertia’’ by
mg1]Fg /]g. However, the dependenceFg(g) is in general
nonlinear. We introduce the Legendre transformation of
Fg(g) which allows us to part in a unique way the friction
force in an ‘‘effective inertia’’ and an ‘‘effective friction
force.’’ Let us define two variablesa andb by

a5
]Fg

]g
,

~4.1!

b5Fg2ag.

Then, Eq.~2.1! can be written in the following form:

N2Fe5meg, ~4.2!

whereFe5b andme5mg1a are the effective friction force
and effective inertia of the system. Figure 12 shows the
variation of the ‘‘effective coefficient of friction’’
me5Fe /mg andme as a function ofg. The former increases
with the linear accelerationg. For high enough values of the
linear acceleration, the effective coefficient of friction is al-

FIG. 7. Angular accelerations of particles at three stages of evo-
lution of a rectangular array. The final stage is the steady state,
where the accelerations do not evolve any more. The whole system
has a translational acceleration of 0.1 g to the left with respect to the
plane. The interparticle and particle-plane coefficients of friction
are 0.1 and 0.2, respectively. The coefficient of friction with the
walls is zero.
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most equal to the particle-plane coefficient of friction, while
the effective inertia is equal to the mass of the system. On
the other hand, in the limit of small accelerations, the effec-
tive coefficient of friction is very small, while the effective
inertia can be many times the real mass of the system.

The behavior of the system in the linear regimes can be
understood as follows: For low accelerations gravity plays a
more important role than the inertial forces, which leads to
mode 3 dominating in each column and mode 1 along each
row. Therefore the energy given to the system is barely dis-
sipated~not at all at the plane! but transformed into rota-
tional energy of the grains. Thus we see a low effective
friction but a high effective mass. In the regime of high

acceleration the situation is reversed: Now inertial forces are
important, so mode 3 dominates along the rows, causing
frustration of rotation. Hence the system behaves more
‘‘blocklike’’ i.e., me5mg5mparticle2plane and there is no ad-
ditional inertia.

C. Dissipation

We have studied the special case of zero acceleration~i.e.,
constant velocity of the basal plane! separately. In this case,
‘‘steady state’’ refers to the usual sense of constant~angular!
velocities. Since constant driving velocity is the limiting case
of low driving acceleration, the reached state shows columns
in mode 3 and rows in mode 1, as described above. It is
interesting that in this case of constant velocity, the self-
organization of particle rotations and contact forces, in the

FIG. 8. Steady-state angular accelerations of particles~a!, normal contact forces~b!, and friction forces~c! of a rectangular array. The
whole system is moving with a constant acceleration of 0.2 g to the left with respect to the plane. The interparticle, particle-plane, and
particle-wall coefficients of friction are 0.05, 0.2, and 0, respectively.

FIG. 9. Steady-state angular accelerations of particles in the first
four rows of a 1034 rectangular array as a function of the particle
positions in each row. The array is moving with a constant accel-
eration of 0.16 g to the left. The interparticle, particle-plane, and
particle-wall coefficients of friction are 0.1, 0.2, and 0, respectively.
The accelerations are normalized with respect to the acceleration of
gravity.

FIG. 10. Evolution of the global coefficient of friction of a rect-
angular 1032 array of particles in time starting with four different
initial states. The constant driving acceleration is 0.3 g, coefficients
of friction for particle particle, particle plane, and particle wall are
0.1, 0.2, and 0, respectively.
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sense defined above, results in a very low steady-state dissi-
pation rate. This can be seen in Fig. 13 which shows the
evolution of the total dissipation rate for a rectangular array.
The steady state appears to be the least dissipative state of
the system. The fact is that, due to friction the relative ve-
locities of particles at interparticle contacts tend to decrease.
In this way, starting with sliding contacts, many contacts are
gradually trapped on the vertical branch of Coulomb’s law.
The dissipation rate decreases due to this increase of the
number of NS contacts. In the rectangular system of Fig. 13
all contacts~except the ones to the walls! finally turned NS.
In a triangular system, some frustration of rotations persists,
so that the steady-state dissipation rate can be higher as com-
pared to a rectangular system with the same parameters. In
this case, the system achieves the steady state with the lowest
possible dissipation rate compatible with the frustration pat-
tern. The latter depends, however, on the initial state@21#.

D. Discussion

We would like to underline and generalize two main re-
sults: First, due to particle rotations, dissipation rate de-
creases dynamically to reach its minimum in the steady state
for a fixed drivingvelocity. We discussed the origin of dy-
namic minimization of dissipation to be a progressive in-
crease of the number of NS contacts. In regular, but also in
dense disordered granular systems, dissipation can arise only
from the ‘‘frustration’’ of rotations. If the network of con-
tacts and their states did not change, like in the case of regu-
lar systems studied here, then the evolution of the system
would rapidly reduce the dissipation rate to its minimum
possible value compatible with the geometry. In some cir-
cumstances, the dissipation rate can be virtually zero in the
steady state when the driving velocity is constant, this essen-
tially being due to friction with the walls. In other words, the
point is not that ‘‘particle rotations reduce dissipation rate in
the system,’’ as is generally argued about the role of rota-
tions in granular systems. The problem has to somewhat be
reversed. Particle rotations tend actually to reduce dissipa-
tion rate down to zero. The question then is to know why
thereis dissipation when a granular system is sheared. From

FIG. 11. Global coefficient of friction of a rectangular array as a
function of the linear acceleration of the system expressed in the
unit of the acceleration of gravity. The interparticle, particle-plane,
and particle-wall coefficients of friction are 0.05, 0.1, and 0, respec-
tively. All quantities are normalized with respect to the weight and
radius of one particle and the acceleration of gravity.

FIG. 12. ~a! Effective inertia and~b! effective coefficient of
friction as a function of the linear acceleration for the system of Fig.
11. The total mass of the system ismg510.

FIG. 13. Total dissipation rate (Ẇ5(^ i j &Si jq i j
t ) as a function of

time for a rectangular array (1033) driven with a constant velocity.
All quantities are normalized with respect to the weight and radius
of one particle and the acceleration of gravity.
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the foregoing discussion, we can state that ‘‘frictional dissi-
pation in granular systems is a consequence of disorder.’’ In
other words, due to disorder the network of contacts is reor-
ganized during deformation. These rearrangements occur so
frequently that the system does not have enough time to
achieve its steady state, where the dissipation rate is weak.

Secondly, not only the global coefficient of friction, but
also the inertia of the system can be renormalized to ‘‘effec-
tive’’ values which are independent of the applied force on
the system for low and high values of the latter. The appear-
ance of an effective inertia should not be specific to regular
arrays. Variation of the friction force on the plane as a func-
tion of the linear acceleration of the system has its origin in
NS contacts, where no dissipation takes place. At such con-
tacts, the friction force is more and more mobilized as accel-
eration increases. Some of them reach the sliding limit and
turn to sliding contacts. In this way, the number of NS con-
tacts decreases with acceleration. We think that some par-
ticular features of granular media could be more conve-
niently explained in terms of an effective inertia. For
instance, the nonharmonicity of sound propagation in granu-
lar media~those aspects not resulting from Hertzian contact
law!, could be an inertia effect@22#. Since the effective in-
ertia seems to be higher in the quasistatic limit~low accel-
eration!, physical consequences are expected to appear in
slow deformations of granular systems as well. Large stress
fluctuations observed in the flow of granular materials~near
the orifice of a hopper, for example! could result from im-
pulsions generated by the high effective inertia of the me-
dium. These features are quite generic and are only quanti-
tatively influenced by the parameters. For instance, the
effective inertia increases with the particle-plane coefficient
of friction, while the effective friction decreases at the same
time. The interparticle coefficient of friction has an opposite
effect. The coefficient of friction with each wall has only a
limited effect on the rotation mode of the particle just in
contact with it.

V. CONCLUSION

This work is an investigation of the influence of the non-
smoothness of contact laws on the global behavior of regular
arrays of rigid particles. Its main objective is to make appear
explicitly those features of granular systems which are diffi-
cult to observe or to identify in the context of geometrical
disorder.

Our algorithm provides a vectorial representation of con-
tact states in the system. Each contact is force-transmitting or
nontransmitting, sliding or nonsliding. Contact states are de-
termined in an iteration process simultaneously with contact
forces and accelerations. The solution in dynamics is gener-
ally unique. However, in some circumstances, there may ap-
pear indeterminate states. We have identified the origins of
such singularities and the degree of indeterminacy in each
case. We have argued that in static equilibrium almost half of
the contact forces inside the medium are undetermined.

During evolution, contact states change and achieve a
steady state, where the accelerations of particles and contact
forces stay constant in time. The steady state is independent
of initial conditions. When the driving velocity is constant,
the steady-state dissipation is the minimum possible value
compatible with frustration of rotations. Since particle rota-
tions lead to a very low dissipation in the steady state, we
concluded that, in the general case of a dense disordered
system,disorder is the main reason why there is at all fric-
tional dissipation in granular media. In fact, due to geo-
metrical disorder, contacts appear and disappear during time,
so that the steady state is never reached by the system.

An interesting feature of the steady state is the appearance
of collective rotation modes and contact states giving rise to
length scales in between the system size and the size of the
particles. These modes and the corresponding length scales
are closely related to the progressive mobilization of friction
forces inside the medium at nonsliding contacts.

In the steady state, the global friction force at the system-
plane interface increases with the linear acceleration of the
system. We have introduced a Legendre transformation on
the friction force which allows for the definition of an effec-
tive inertia and an effective coefficient of friction. The effec-
tive inertia can be much higher than the total mass of the
system in particular in the limit of weak acceleration. We
argued that this property might be an important point to take
into account for analyzing fluctuations observed in the
granular flow.
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